

Quaternion Weyl Orbits from Coxeter-Dynkin Geometric Group Theory OD 1D lines \& edges 2D faces \& planes 3D cells \& polyhedra 4D cells \& polychora 5D-8D cells \& polytopes ∞ D cells \& polytopes

Agenda

- Introducing the Mathematica ${ }^{\text {TM }}$ based VisibLie-E8 Tool
- The Coxeter-Dynkin Visualizer (Groups, Weyl Orbits, Hasse Diagrams, etc.)
- The (Bi)Quaternion/(Bi)Octonion/Sedenion Engine (Fano Plane/Cube/Tesseract, etc.)
- The VisibLie_E8 Hyperdimensional Visualizer (2D/3D Projections, etc.)
- Introducing the Dimensions (0 to $8, \infty$)
- OD points, 1D edges \& 2D faces (A2, B2=C2, G2, H2 Groups)
- 3D cells \& polyhedra (A3, B3, H3 Groups)
- 4D cells \& polychora (A4, C4, D4, F4, H4 Groups)
- 5D-8D cells \& polytopes (A5, C6, D6, E6, E7, E8=BC8+D8 Groups)
- Generating Solid Convex Hulls from Quaternions and their Weyl Group Orbits
- The 5 Platonic Solids, which includes duals
- The 13 Archimedean Solids and their Catalan Duals, with some Johnson and Near-miss Johnsons
- 4D Polychora w/Duals, including the Dual Snub 24-Cell

Agenda

- Introducing the Mathematica ${ }^{\text {TM }}$ based VisibLie-E8 Tool
- The Coxeter-Dynkin Visualizer (Groups, Weyl Orbits, Hasse Diagrams, etc.)
- The (Bi)Quaternion/(Bi)Octonion/Sedenion Engine (Fano Plane/Cube/Tesseract, etc.)
- The VisibLie_E8 Hyperdimensional Visualizer (2D/3D Projections, etc.)
- Introducing the Dimensions (0 to $8, \infty$)
- OD points, 1D edges \& 2D faces (A2, B2=C2, G2, H2 Groups)
- 3D cells \& polyhedra (A3, B3, H3 Groups)
- 4D cells \& polychora (A4, C4, D4, F4, H4 Groups)
- 5D-8D cells \& polytopes (A5, C6, D6, E6, E7, E8=BC8+D8 Groups)
- Generating Solid Convex Hulls from Quaternions and their Weyl Group Orbits
- The 5 Platonic Solids, which includes duals
- The 13 Archimedean Solids and their Catalan Duals, with some Johnson and Near-miss Johnsons
- 4D Polychora w/Duals, including the Dual Snub 24-Cell

Introducing the Mathematica ${ }^{\text {TM }}$ based VisibLie-E8 Tool J Gregory Moxness JGMoxness@TheoryOfEverything.org

For more detail information online please click here.

Citations to source material found in this presentation:

- Koca, Mehmet; Ozdes Koca, Nazife; Koc, Ramazon (2010). "Catalan Solids Derived From 3D-Root Systems and Quaternions". Journal of Mathematical Physics. 51 (4). arXiv:0908.3272. doi:10.1063/1.3356985.
- Koca, Mehmet; Al-Ajmi, Mudhahir; Ozdes Koca, Nazife (2011). "Quaternionic representation of snub 24-cell and its dual polytope derived from E8 root system". Linear Algebra and Its Applications. 434 (4): 977989. doi:10.1016/i.laa.2010.10.005. ISSN 0024-3795. S2CID 18278359.

Introducing The VisibLie_E8 Tool

Introducing The VisibLie_E8 Tool

VisibLie_E8

A Theory Of Everything Visualizer

The left-side bar is common to all demonstrations and allows visualizing results in 2D, 3D, stereo and anaglyph (red-cyan glasses), control the number of time-steps for video animations, etc.

You can select color schemes, view code snippets, change opacity, resolutions, turning on/off coordinate axis, vertex labels, turn on file exports, and change export file types.

The physics button shows theoretical quantum particle assignments based on E8 group theoretic considerations.

The top bar changes to accommodate individual options and selections related to each numbered demonstration pane. Sometimes, user selectable options are provided within the output pane when there is insufficient room in the top bar.

The output pane can also be interactive with mouse click-drag features in both 2D and 3D.

The shown output is pane \#4 for Coxeter-Dynkin visualizations.

The Coxeter-Dynkin Visualizer Demonstration Pane

The (Bi)Quaternion / (Bi)Octonion / Sedenion Engine

The VisibLie_E8 Hyperdimensional Visualizer Pane

This is the main geometry visualization engine for E8 and all of its related sub-groups. While the code works in this UI, it also is used outside of the UI to create specific output, such as that used in this presentation.

Agenda

- Introducing the Mathematica ${ }^{\text {TM }}$ based VisibLie-E8 Tool
- The Coxeter-Dynkin Visualizer (Groups, Weyl Orbits, Hasse Diagrams, etc.)
- The (Bi)Quaternion/(Bi)Octonion/Sedenion Engine (Fano Plane/Cube/Tesseract, etc.)
- The VisibLie_E8 Hyperdimensional Visualizer (2D/3D Projections, etc.)
- Introducing the Dimensions (0 to $8, \infty$)
- OD points, 1D edges \& 2D faces (A2, B2=C2, G2, H2 Groups)
- 3D cells \& polyhedra (A3, B3, H3 Groups)
- 4D cells \& polychora (A4, C4, D4, F4, H4 Groups)
- 5D-8D cells \& polytopes (A5, C6, D6, E6, E7, E8=BC8+D8 Groups)
- Generating Solid Convex Hulls from Quaternions and their Weyl Group Orbits
- The 5 Platonic Solids, which includes duals
- The 13 Archimedean Solids and their Catalan Duals, with some Johnson and Near-miss Johnsons
- 4D Polychora w/Duals, including the Dual Snub 24-Cell

2D edges \& faces (A2, B2=C2, H2, G2 Groups)

BC2 Parent

2D edges \& faces (A2, B2=C2, H2, G2 Groups)

Cartan=Schlafli $\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right) \operatorname{Coxeter}\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)$
Group SU(3)

Group=SU (3)
Hasse Visualization

$$
\begin{aligned}
& \text { Dimension=8 Rank=2 DetCM=3 \# of Positive Roots=3 Coxeter \#=3 } \\
& \text { CartanMatrix Root \# Weights Positive Root Vectors Heights }
\end{aligned}
$$

$\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right) \quad\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \quad\left(\begin{array}{cc}2 & -1 \\ -1 & 2 \\ 1 & 1\end{array}\right) \quad\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right) \quad\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$

Cartan $\left(\begin{array}{cc}2 & -1 \\ -2 & 2\end{array}\right)$ Schlafil $\left(\begin{array}{cc}2 & -\sqrt{2} \\ -\sqrt{2} & 2\end{array}\right) \operatorname{Coxeter}\left(\begin{array}{ll}1 & 4 \\ 4 & 1\end{array}\right)$
Group SO(5)
(1) ${ }^{4}-2$

B2 Parent

Dimension=10 Rank=2 DetCM=2 \# of Positive Roots=4 Coxeter \#=4 CartanMatrix Root \# Weights Positive Root Vectors Heights
$\left(\begin{array}{cc}2 & -1 \\ -2 & 2\end{array}\right) \quad\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right) \quad\left(\begin{array}{cc}2 & -2 \\ -1 & 2 \\ 1 & 0 \\ 0 & 2\end{array}\right) \quad\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 2\end{array}\right) \quad\left(\begin{array}{l}1 \\ 1 \\ 2 \\ 3\end{array}\right)$

2D edges \& faces (A2, B2=C2, H2, G2 Groups)

$$
\begin{aligned}
& \text { Cartan }\left(\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right) \text { Schlafli }\left(\begin{array}{cc}
2 & -\sqrt{3} \\
-\sqrt{3} & 2
\end{array}\right) \text { Coxeter }\left(\begin{array}{ll}
1 & 6 \\
6 & 1
\end{array}\right) \\
& \text { Group } O(3) \\
& \text { G2 Parent }
\end{aligned}
$$

3D cells \& polyhedra (A3, BC3, H3) Showing Platonic Solids

3D cells \& polyhedra (A3, B3, H3)

$$
\begin{aligned}
& \text { Cartan=Schlafil }\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) \operatorname{Coxeter}\left(\begin{array}{lll}
1 & 3 & 2 \\
3 & 1 & 3 \\
2 & 3 & 1
\end{array}\right) \text { Simple Roots }\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right) \\
& \text { Group SU(4) } \\
& \frac{3}{\sqrt{2}}+\frac{e_{2}}{\sqrt{2}} \frac{e_{3}}{\sqrt{2}}-\frac{e_{2}}{\sqrt{2}} \frac{e_{2}}{\sqrt{2}}-\frac{e_{1}}{\sqrt{2}}
\end{aligned}
$$

Dimension=15
CartanMatrix $=3$
:---:
Root $=4$
Weights

$\left(\begin{array}{ccc}2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2\end{array}\right) \quad\left(\begin{array}{l}1 \\
2 \\
3 \\
4 \\
5 \\
6\end{array}\right)\left(\begin{array}{ccc}2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2 \\
1 & 1 & -1 \\
-1 & 1 & 1 \\
1 & 0 & 1\end{array}\right)$

3D cells \& polyhedra (A3, B3, H3)

Dimension=21 Rank=3 DetCM=2 \# of Positive Roots=9 Coxeter \#=6 CartanMatrix Root \# Weights Positive Root Vectors Heights

$\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1\end{array}\right) \quad\binom{1}{2} \quad\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -2\end{array}\right) \quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$

4D cells \& polychora (A4, C4, D4, F4, H4)

4D cells \& polychora (A4, C4, D4, F4, H4)

Dimension=24 Rank=4 CartanMatrix Root \# $\left(\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right)\left(\begin{array}{c}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10\end{array}\right)\left(\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \\ 1 & 1 & -1 & 0 \\ -1 & 1 & 1 & -1 \\ 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & -1 \\ -1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$
\# of Positive Roots=10 Coxeter \#=5 Positive Root Vectors Heights
$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right)$

$19\{1,0 \infty, 0\}$

4D cells \& polychora (A4, C4, D4, F4, H4)

$$
\begin{aligned}
& \begin{array}{l}
\text { Cartan }\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -2 \\
0 & 0 & -1 & 2
\end{array}\right) \text { Schlafil }\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -\sqrt{2} \\
0 & 0 & -\sqrt{2} & 2
\end{array}\right) \operatorname{Coxeter}\left(\begin{array}{llll}
1 & 3 & 2 & 2 \\
3 & 1 & 3 & 2 \\
2 & 3 & 1 & 4 \\
2 & 2 & 4 & 4
\end{array}\right) \\
\text { Group } \mathbf{S p}(\mathbf{1})
\end{array} \\
& (1)^{3}(2)^{3}-(4) \\
& \text { (1) })^{3}(2)^{\text {Cupasent }}-(3)-4
\end{aligned}
$$

$\begin{array}{ll}\text { CartanMatrix } & \text { Root } \\ \text { Ronk }\end{array}$ CartanMatrix Root \# Weights CartanMatrix
$\left.\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -2 \\ 0 & 0 & \text { Root }\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\left(\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1\end{array}\right)$

$\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0\end{array}$
$\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ & 0 & 0 & 1\end{array}$
$\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0\end{array}$
$\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 0 & 2 & 1\end{array}$
$\begin{array}{llll}0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1\end{array}$
$\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & & 2 & \end{array}$
$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 2 & 2 & 1\end{array}$
$\begin{array}{lllll}0 & 2 & 2 & 1 \\ 1 & 1 & 2 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 2 & & 2 & 1\end{array}$
$\begin{array}{llll}1 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1\end{array}$

4D cells \& polychora (A4, C4, D4, F4, H4)

DetCM=4 Weights $\left(\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \\ 1 & 1 & -1 & -1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & 0 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ -1 & 0 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 0 & 1 & 0 & 0\end{array}\right)$
\# of Positive Roots=12 Coxeter \#=6 Positive Root Vectors Heights
$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1\end{array}\right)$
$\begin{array}{llll}1 & 2 & 1 & 1\end{array}$
$\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 5\end{array}\right)$

4D cells \& polychora (A4, C4, D4, F4, H4)

$$
\begin{aligned}
& \text { (1) }{ }^{3}(2)-(3){ }^{3}
\end{aligned}
$$

4D cells \& polychora (A4, C4, D4, F4, H4)

5D-8D cells \& polytopes
(A5, C6, D6, E6, E7, E8=BC8+D8)

(1) ${ }^{3}(2)^{3}-(3)^{3}-(4)^{3}-(5)$
(1) ${ }^{3}(2)^{3}(3)^{3}-(4)^{3}-(5)$
$(1)^{3}-(2)^{3}-(3)^{3}-(5)$

(1) ${ }^{3}(2)^{3}-(3)^{3}-(4)^{3}-(5)$

E6 Parent

E7 Parent

$$
(1)^{3}-(2)^{3}(3)^{3}-(4)^{3}-(5)^{3}-(6)^{3}-(7)
$$

5D-8D cells \& polytopes
 (A5, C6, D6, E6, E7, E8=BC8+D8)

(1) ${ }^{3}(2)^{3}-(3)^{3}-(4)^{3}-(5)$

A5 Parent
Dimension $=35$
CartanMatrix
$\left(\begin{array}{ccccc}2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2\end{array}\right)$
\# of Positive Roots=15 Coxeter \#=6 Positive Root Vectors Heights $\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$ 01000 $\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}$ $\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}$ $\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 0 & 0 \\ 0\end{array}$
$\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0\end{array}$
$0 \begin{array}{lllll}0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1\end{array}$
$0 \quad 0 \quad 0 \quad 11$
$\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}$
$\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1\end{array}$
$0 \begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}$
$\begin{array}{lllll}1 & 1 & 1 & 1 & 0\end{array}$
$\left(\begin{array}{lllll}0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}\right)$

Group=SO (5
Hasse Visualization

5D-8D cells \& polytopes
 (A5, C6, D6, E6, E7, E8=BC8+D8)

BC6 Hexeract
(1) ${ }^{3}(2)^{3}-(3)^{3}-(4)^{3}(5)^{4}-6$

$$
(1)^{\prime}-(2)^{3}-(3)^{3}-(4)^{2}-(5)
$$

$=$ 5D-8D cells \& polytopes
(A5, C6, D6, E6, E7, E8=BC8+D8)

5D-8D cells \& polytopes
 (A5, C6, D6, E6, E7, E8=BC8+D8)

5D-8D cells \& polytopes
(A5, C6, D6, E6, E7, E8=BC8+D8)

5D-8D cells \& polytopes (A5, C6, D6, E6, E7, E8=BC8+D8)

$256=2^{\text {n=8 }}$ permutations of filled (aka. ringed) nodes which represent Weyl orbits that generate sets of vertices, edges, faces, and cells. The names are generated based on:

5D-8D cells \& polytopes
 (A5, C6, D6, E6, E7, E8=BC8+D8)

SO(16)=D8 Height 120=(112+4+4)+128'

5D-8D cells \& polytopes (A5, C6, D6, E6, E7, E8=BC8+D8)

SP8 \otimes SP8
Projection Matrix
$\left(\begin{array}{cccccccc}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

SO8 \otimes SO8

Projection

D4 Snub

D4 Snub

Agenda

- Introducing the Mathematica ${ }^{\text {TM }}$ based VisibLie-E8 Tool
- The Coxeter-Dynkin Visualizer (Groups, Weyl Orbits, Hasse Diagrams, etc.)
- The (Bi)Quaternion/(Bi)Octonion/Sedenion Engine (Fano Plane/Cube/Tesseract, etc.)
- The VisibLie_E8 Hyperdimensional Visualizer (2D/3D Projections, etc.)
- Introducing the Dimensions (0 to $8, \infty$)
- OD points, 1D edges \& 2D faces (A2, B2=C2, G2, H2 Groups)
- 3D cells \& polyhedra (A3, B3, H3 Groups)
- 4D cells \& polychora (A4, C4, D4, F4, H4 Groups)
- 5D-8D cells \& polytopes (A5, C6, D6, E6, E7, E8=BC8+D8 Groups)
- Generating Solid Convex Hulls from Quaternions and their Weyl Group Orbits
- The 5 Platonic Solids, which includes duals
- The 13 Archimedean Solids and their Catalan Duals, with some Johnson and Near-miss Johnsons
- 4D Polychora w/Duals, including the Dual Snub 24-Cell

Generating Solid Convex Hulls

from Quaternions and their Weyl Group Orbits
 \section*{Weyl orbits [edit]}

Another construction method uses quaternions and the Icosahedral symmetry of Weyl group orbits $O(\Lambda)=W\left(H_{4}\right)=I$ of order $120 .{ }^{[18]}$ The following describe T and T^{\prime} 24-cells as quaternion orbit weights of D4 under the Weyl group W(D4):

With quaternions (p, q) where \bar{p} is the conjugate $W\left(H_{4}\right)=\left\{[p, \bar{p}] \oplus[p, \bar{p}]^{*}\right\}$ is the symmetry group

Given $p \in T$ such that $\bar{p}= \pm p^{4}, \bar{p}^{2}= \pm p^{3}, \bar{p}^{3}= \pm$

- the snub 24 -cell $S=\sum_{i=1}^{4} \oplus p^{i}$
- the 600-cell $I=T+S=\sum_{i=0}^{4} \oplus p^{i} T$
- the 120-cell $J=\sum_{i, j=0}^{4} \oplus p^{i} \bar{p}^{\dagger j} T^{\prime}$
- the dual snub 24-cell $=T \oplus T^{\prime} \oplus S^{\prime}$.

This is from the Wikipedia page describing the mathematics behind the 4D quaternion polytopes generated in this presentation.

T =Rectified
V1 =Parent
V2 =BiRectified
V3 =TriRectified
$\mathrm{T}^{\prime}=$ CantiRuncinated (if node 2 is in the middle of D4 or BiCantiTruncated if it is on left) $\mathrm{T}+\mathrm{T}^{\prime}=$ OmniTruncated
with Snub=O(0000)

D4 CantiRuncinated

Generating Solid Convex Hulls from Quaternions and their Weyl Group Orbits

```
In[o]:= (* Arbitrary Integers a1,a2,a3 that get assigned from Weyl orbital weights *)
    \alpha=(a1-a3) / 2;
    \beta=(a1 + a3) / 2;
    \gamma=(a1+2a2+a3)/2; These are snippets of my Mathematica implementation which supports the
    a := {a1, a2, a3};
generation of the output shown.
In[o]:= (* Resolving the {a1,a2,a3} using Weyl orbit weights *
    aRule@select_List := Inner[Rule, a, select, List];
    aRule@{0, 0, 1}
Out[o]= {a1 }\boldsymbol{->0,a,a2->0, a3 }\boldsymbol{->}\mathbf{1}
    (* Quaternion prq function *)
    r1@q_ := prq[\alpha1, q
    r2@q_ := prq[\alpha2, q
    r3@q_ := prq[\alpha3, q}\mp@subsup{|}{}{*},-\alpha3]
In[o]:= \Lambda[f_, in_List, select_List : {0, 0, 0}, permType_:True]:=f[in/. aRule@seLect, permType];
    (* The Tribonacci Constant - Using 3 consecutive numbers ({0,0,1} vs. 2 consecutive {0,1}*)
    xRep = ToRadicals @Solve[x3}-\mp@subsup{x}{}{2}-x-1==0]\llbracket1,1\rrbracket
    N@%
Out[o]= x }->\frac{1}{3}(1+(19-3\sqrt{}{33}\mp@subsup{)}{}{1/3}+(19+3\sqrt{}{33}\mp@subsup{)}{}{1/3}
```


Generating Solid Convex Hulls

 from Quaternions and their Wevl Group Orbits$\mathrm{q} 1=\left(\tau e_{1}-2 \sigma e_{2}+\tau^{3} e_{3}\right) / 2 /$ s1Rep;
$\mathrm{q} 1 \mathrm{p}=\left(2 e_{1}+\sqrt{5} e_{2}+(\tau+2) e_{3}\right) / 2 /$. slRep;
A1 $=\lambda 1\left(-\sigma e_{2}+e_{3}\right) /$. siRep;
$\mathrm{B1}=\eta 1\left(-\sigma e_{1}+\tau e_{3}\right) /$. s1Rep; $\mathbf{c}=\left(e_{1}-\sigma e_{2}+\tau e_{3}\right) / 2 /$. slRep;

Dodecahedron (20-Icosahedron (12) + Cube (8)) **
$\left\{\right.$ "H3", $\left.\frac{\text { bNorm }}{\text { aNorm }} \frac{2}{\sqrt{3}}\{\sigma, 0,0\}\right\} /$. slRep,
$\left\{\right.$ "H3", $\frac{\text { bNorm }}{\text { aNorm }} \frac{2}{\sqrt{3}}\{1,-1,1\}$, "None" $\}$,
$\left\{\right.$ "H3", $\left.\frac{1}{\text { aNorm }}\{\theta, \sigma, \theta\}\right\}$,
$\left\{\right.$ "Н3", $\left.\left.\left.\frac{1}{\text { aNorm }}\{-1, \tau, \sigma\}\right\}\right\}\right] /$ siRep, Assumptions $\rightarrow \varphi$ ©Assumptions]; hulls3DeoScaleListDoe\% tallytist=\{30, 20, 12\}
$\Lambda[$ oCalc $,\{\alpha, \beta, \gamma\},\{1,0,0\}$, Osign"]
iNorm $=1 /$ Fullisimplify [Norme $\{0,1,1 / \varphi\} /$. siRep, Assumptions $\rightarrow \varphi$ wassumptions]; iNorm $=1 /$ Fullsimplify $[$ Norme $\{\theta, 1,1 / \varphi\}$
aNorm $=$ FullisimplifyeoctNorm $[A 1 /$. slRep] ; BNorm = FullsimplifyooctNorm [B1 / . siRepp ;
CNorm = FullsimplifyeoctNorm[C1 /. sRep]; cNorm = FullSimpli fyeoctNorm[C1 /. slRep];

This is the output from the example code on the left.

This is example code that initiates the generation of the output.
hulls3D gathers the vertices by their 3D norm and calculates each concentric convex hull with increasing opacity and varying colors.

The $\boldsymbol{\Lambda}$ function takes as input a function (e.g. oCalc to only calculate the orbit vertices, vs. oShow which also generates the convex hulls using hulls3D). Scaling can be applied before or after calling Λ or 0 Calc.

In this case, the $\{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}\}$ are quaternions $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}$ or the group (e.g. "H3") and may depend on identifying a particular (optional or even scaled) Weyl orbit (i.e. $\{\mathbf{1 , 0 , 0 \}}$ as the "Parent" of the diagram). Shown are the 7=2 rank=3-1 combinations of empty and filled nodes from the 3 node Coxeter-Dynkin diagrams, with $\{\mathbf{0 , 0 , 0}\}$ being a "Snub" (omitted here) and $\{\mathbf{1 , 1 , 1 \}}$ being "OmniTruncated") .

The optional parameter "Osign" identifies one of 14 combinations of sign and/or position permutations (i.e. this one takes only Odd sign permutations from the cyclic position permutations (vs. all sign permutations given by the default "Rotate").

The 5 Platonic Solids, which includes their Duals
B_{3}

Tetrahedron (Self Dual)

The 5 Platonic Solids, which includes their Duals
${ }^{A_{3}}$
$\wedge(010)$ Octahedron (see Platonic Dual $W(B 3) \wedge(001)$ Cube below)

D3

Octahedron (Cube)

The 5 Platonic Solids, which includes their Duals
${ }_{3}$
A(100) Dodecahedron \& $\wedge(00)$) Icosahedron (Platonic Solid Duals of each other)
$B 3$
Dodecahedron (Icosahedron)
010 001
101
$\Delta[$ calc, $\{\alpha, \beta, \gamma\},\{\theta, \theta, 1\}$, "Rotate"]
$\Delta[$ OShow, $\{\alpha, \beta, \gamma\},\{\theta, \theta, 1\}$, "Rotate" $\}$
$\left.\left\{\left\{-\frac{1}{2},-\frac{1}{2 \varphi}, \theta\right\},\left\{-\frac{1}{2}, \frac{1}{2 \varphi}, \theta\right\},\left\{\theta,-\frac{1}{2},-\frac{1}{2 \varphi}\right\},\left\{\theta,-\frac{1}{2}, \frac{1}{2 \varphi}\right\},\left\{\theta, \frac{1}{2},-\frac{1}{2 \varphi}\right\}, \frac{1}{2 \varphi}\right\},\left\{\frac{1}{2},-\frac{1}{2 \varphi}, \theta\right\},\left\{\frac{1}{2}, \frac{1}{2 \varphi}, \theta\right\},\left\{-\frac{1}{2 \varphi}, \theta,-\frac{1}{2}\right\},\left\{-\frac{1}{2 \varphi}, \theta, \frac{1}{2}\right\},\left\{\frac{1}{2 \varphi}, \theta,-\frac{1}{2}\right\},\left\{\frac{1}{2 \varphi}, \theta, \frac{1}{2}\right\}\right\}$
110
011
111

(001) Icosahedron

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons

Truncated Tetrahedron (Triakis Tetrahedron)

Mirrored Pairs - Irregular Small Rhombicuboctahedron

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons

Cuboctahedron (Rhombic Dodecahedron)

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons A_{3}
B_{3}
H_{3}

Truncated Octahedron (Tetrakis Hexahedron)

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons A_{3}

Small Rhombicuboctahedron (Deltoidal Icositetrahedron)

010
001
101
110
011
111

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons A_{3}

Truncated Cube (Triakis Octahedron)
010 001 101 110 011

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons

Great Rhombicosidodecahedron (Disdyakis Dodecahedron)

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons A_{3}
B_{3}
H_{3}

Chiral Archimedean Snub Cubes (when paired give a non-chiral $W(B 3) \wedge(111)$ Great Rhombicuboctahedron (aka. Truncated cuboctahedron albeit irregular)
Snub Cube (Pentagonal Icositetrahedron)
Mirrored Pairs - Irregular Great Rhombicosidodecahedron (prev slide)
001

101
110
011
111

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons A_{3}
B_{3}

Truncated Dodecahedron (Triakis Icosahedron)
010 001
101
110
011
111

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons

B_{3}

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons

A_{3}

B_{3}
H_{3}
Truncated Icosahedron (Pentakis Dodecahedron)

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons

Small Rhombicosidodecahedron (Deltoidal Hexacontahedron)

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons

A_{3}

B_{3}
H_{3}

Snub Dodecahedron (Pentagonal Hexacontahedron)

Mirrored Pairs - Irregular Great Rhombicosidodecahedron (next slide)

001
101
110
011
111
$\Delta\left[\right.$ ocalc, $\frac{\{\alpha, \beta, \gamma\}}{\frac{1}{2} \sqrt{1+\frac{1}{\varphi^{2}}}},\{\theta, 0,1\}$, "osignPos"],
(* Orbit 3 phScale Chiral snub dodecahedron (60)
phScale oc20ctList]]

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons
B_{3}
H_{3}
Great Rhombicosidodecahedron (Disdyakis Triacontahedron)
010
001
101
110
011
111

The 13 Archimedean Solids with their Catalan Duals with some Johnson and Near-miss Johnsons

Lengthe\%
listile istils = oct2list[\#] \& / 8 \%\%; hulls3DPerms["1istIL部, False, , 1] $=128$

Pentakis Icosidodecahedron (Chamfered Dodecahedron)

These are 3D (x, y, z) convex hulls projected from 4D group H4 (shown here with $4^{\text {th }}$ Dim w=0)

Agenda

- Introducing the Mathematica ${ }^{\text {TM }}$ based VisibLie-E8 Tool
- The Coxeter-Dynkin Visualizer (Groups, Weyl Orbits, Hasse Diagrams, etc.)
- The (Bi)Quaternion/(Bi)Octonion/Sedenion Engine (Fano Plane/Cube/Tesseract, etc.)
- The VisibLie_E8 Hyperdimensional Visualizer (2D/3D Projections, etc.)
- Introducing the Dimensions (0 to $8, \infty$)
- OD points, 1D edges \& 2D faces (A2, B2=C2, G2, H2 Groups)
- 3D cells \& polyhedra (A3, B3, H3 Groups)
- 4D cells \& polychora (A4, C4, D4, F4, H4 Groups)
- 5D-8D cells \& polytopes (A5, C6, D6, E6, E7, E8=BC8+D8 Groups)
- Generating Solid Convex Hulls from Quaternions and their Weyl Group Orbits
- The 5 Platonic Solids, which includes duals
- The 13 Archimedean Solids and their Catalan Duals, with some Johnson and Near-miss Johnsons
- 4D Polychora w/Duals, including the Dual Snub 24-Cell

The 600-Cell / 120-Cell Quaternion 3D Structure
(T)etrahedral elements=D4(24)=16-Cell(BC4)+8-Cell(TriRectified BC4)=24-Cell Alternate (or "Dual" of Self Dual D4) T'=Rectified BC4 (16-Cell):
$\mathrm{F} 4(48)=\mathrm{T}+\mathrm{T}^{\prime}$ and $\mathrm{T}+\mathrm{T}^{\prime}+\phi\left(\mathrm{T}+\mathrm{T}^{\prime}\right)$ are $2 \mathrm{X}(48$ of 112$)$ integer vertex parts of E 8 folded to ($\left.\mathrm{I}=\mathrm{H} 4\right)+\phi \mathrm{H} 4$
Orthogonal projection in 3 dimensions with $\{x=1, y=1, z=1, w=0\}$ all other permutations simply rotate the structure

T 24-Cell

Sorted Positive $(2 * 2+2 * 4) T=$

Sorted Positive (2*3+3*2) T'=

The 600-Cell / 120-Cell Quaternion 3D Structure 16-Cell +8 -Cell $=24$-Cell Tetrahedral elements:
$(T+\phi T) \&\left(T^{\prime}+\phi T^{\prime}\right)$
3D
Rhombic
Dodecahedron ($6+8=14$ vertex)
Cube
Stellation

Cube
Truncation
3D
Cubocta-
Hedron
Orthogonal projection in 3 dimensions with $\{x=1, y=1, z=1, w=0\}$

The 600-Cell / 120-Cell Quaternion Structure

- Both the 120 vertex 600-Cell(120) and the 600 vertex 120Cell(600) can be generated from quaternion $T(24)$ or $\mathrm{T}^{\prime}(24)$ basis vectors one or two exponents ($\mathrm{i}, \mathrm{j}=0-4$) on one or two generator vertices (p^{i}, p^{j}) (see Koca 2011 et al.).
- The H4 600-Cell Icosahedral group I(120) (or its alternate I' using T^{\prime} instead of T) is generated from p^{i} only.
- This gives us the ability to map the 120-Cell vertices to each of the 5 copies of $600-$ Cell vertices.
- This mapping includes the other orbits of the Weyl group W(D4) as well, e.g. $\mathrm{M}(192)=\mathrm{M} 1(96)+\mathrm{M} 2(96)$, and $\mathrm{N}(288)$.
- As done with the 600-Cell, implementing the 120-Cell in this manner allows the use of not only two the scaled copies of the $120-\mathrm{Cell}(\mathrm{J} \& J \phi)$.

The 600-Cell / 120-Cell Quaternion 3D Structure

Snub 24-Cell (S=I-T) (96)

$$
\mathrm{S}=\Sigma_{i=1}^{4} \mathrm{p}^{\mathrm{i}} \circ\left(\overline{\mathrm{p}}^{\mathrm{i}} \circ \mathrm{~T}\right)
$$

Alternate ($S^{\prime}=I^{\prime}-T^{\prime}$)

$$
S^{\prime}=\Sigma_{i=1}^{4} p^{i} \circ\left(\bar{p}^{i \dagger} \circ T^{\prime}\right)
$$

The 600-Cell / 120-Cell Quaternion 3D Structure Dual Snub 24-Cell (144) and Alternate Dual Snub 24-Cell
$T \oplus T^{\prime} \oplus S^{\prime}$

$$
\mathrm{T} \oplus \mathrm{~T}^{\prime} \oplus \mathrm{S}
$$

The 600-Cell / 120-Cell Quaternion 3D Structure 3D Hull Visualization of the H4 600-Cell Real \& Quaternion Icosian (I)

The 600-Cell / 120-Cell Quaternion 3D Structure
3D Hull Visualization of the 600-Cell Real \& Quaternion Icosian (I)=H4 E8(SRE) $\leftrightarrow \mathrm{H} 4(120)+\mathrm{H} 4 \phi(120)$ with particle assignments

The 600-cell has an outer 3D hull of a Pentakis Icosidodecahedron (as shown above in slide \#51) Which is the dual to the Truncated Rhombic Triacontahedron or Chamfered Dodecahedron (being the outer 3D hull of the 120-Cell orthogonally projected to 3D)

The 600-Cell / 120-Cell Quaternion 3D Structure

- It is important to note that all the indices below also work for both the canonical 120-Cell (J) values as well as an alternate form (J').
- This (J) is implemented natively inside the VisibLie_E8 viewer based on the Koca's quaternion generation reproduces the canonical permutation vertex values exactly using $I=\sum_{a=0}^{4} \oplus p^{i} \circ T$, where $\mathrm{p}=\alpha=\frac{1}{2}\left(\varphi+e_{1}+\frac{e_{2}}{\varphi}\right)$.
- This equality allows re-sorting of the canonical values to index to the I(120)x5 quaternion powers.
- The (J') alternate T quaternion generated vertex set is implemented by using the auxData.xls input data file.
- This file contains the same sort as the J for its vertex data exported from Mathematica, which allows the use of the same Weyl W(D4) orbit indices.

The 600-Cell / 120-Cell Quaternion 3D Structure 3D Hull Visualization of the 120-Cell (J) and Alternate J' (600) Using I and one exponent ($\mathrm{a}=0-4$)
Orthogonal projection in 3 dimensions with

$$
\{x=1, y=1, z=1, w=0\}
$$

The 600-Cell / 120-Cell Quaternion 3D Structure 3D Hull Visualization of the 120-Cell (J) and Alternate J' (600) .

Using two exponent ($a=0-4, b=0,4$)

The 600-Cell / 120-Cell Quaternion 3D Structure

3D Visualization of the 120-Cell (J):

$$
\mathrm{J}=\sum_{\mathrm{a}=0}^{4} \bigoplus^{\mathrm{I}} \circ\left(\alpha^{\mathrm{a}} \circ\left(\bar{\alpha}^{\dagger a} \circ \mathrm{C}^{\prime}\right)\right)
$$

The outer 3D hull is the Truncated Rhombic Triacontahedron or Chamfered Dodecahedron

3D Visualization of the 120-Cell (J') with particle assignments produced with:

$$
\mathrm{J}^{\prime}=\sum_{\mathrm{a}, \mathrm{~b}=0}^{4} \oplus \alpha^{\mathrm{a}} \circ\left(\mathrm{~T} \circ \beta^{\mathrm{b}}\right)
$$

Is this outer 3D hull a new near-miss Johnson Solid?

The 600-Cell / 120-Cell Quaternion 3D Structure
3D Visualization of the 120-Cell (J) with an overlay of the Dual Snub 24-Cell to the right showing the Tetrahedrons establishing the pentagaonal faces:

$$
\mathrm{J}=\sum_{\mathrm{a}=0}^{4} \bigoplus^{\mathrm{I}} \circ\left(\alpha^{\mathrm{a}} \circ\left(\bar{\alpha}^{\dagger a} \circ \mathrm{C}^{\prime}\right)\right)
$$

The outer 3D hull is the Truncated Rhombic Triacontahedron or Chamfered Dodecahedron

The 600-Cell / 120-Cell Quaternion 3D Structure
24-Cell (T) to 600-Cell (I)

$$
I=\sum_{a=0}^{4} \oplus p^{i} \circ T
$$

$$
J=\sum_{a=0}^{4} \bigoplus^{1 \circ} \circ\left(\alpha^{a} \circ\left(\bar{\alpha}^{+a} \circ c^{\prime}\right)\right)
$$

The 600-Cell / 120-Cell Quaternion 3D Structure
3D Hull Visualization of the 120-Cell (J)
and
Examples of permutations that are not uniform within the 4 3D subsets of a 4D polytope and having less uniform faces
geometry.

These are natural rotations of a 4D polytope when projected to 3D. The fact they emerge within the limited quaternion exponents is interesting.

